Covariance Matrix Estimation and Classification With Limited Training Data
نویسندگان
چکیده
A new covariance matrix estimator useful for designing classifiers with limited training data is developed. In experiments, this estimator achieved higher classification accuracy than the sample covariance matrix and common covariance matrix estimates. In about half of the experiments, it achieved higher accuracy than regularized discriminant analysis, but required much less computation.
منابع مشابه
Covariance Estimation For Limited Training Samples
In Gaussian maximum likelihood classification, the mean vector and covariance matrix are usually estimated from training samples. When the training sample size is small compared to dimensionality, the sample estimates, especially the covariance matrix becomes highly variable and consequently, the classifier performs poorly. In particular, if the number of training samples is less than dimension...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملCovariance estimation with limited training samples
This paper describes a covariance estimator formulated under an empirical Bayesian setting to mitigate the problem of limited training samples in the Gaussian maximum likelihood classification for remote sensing. The most suitable covariance mixture is selected by maximizing the average leave-one-out log likelihood. Experimental results using AVIRIS data are presented.
متن کاملتحلیل ممیز غیرپارامتریک بهبودیافته برای دستهبندی تصاویر ابرطیفی با نمونه آموزشی محدود
Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...
متن کاملAn adaptive method for combined covariance estimation and classification
In this paper a family of adaptive covariance estimators is proposed to mitigate the problem of limited training samples for application to hyperspectral data analysis in quadratic maximum likelihood classification. These estimators are the combination of adaptive classification procedures and regularized covariance estimators. In these proposed estimators, the semi-labeled samples (whose label...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 18 شماره
صفحات -
تاریخ انتشار 1996